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Studying the conformation and dynamics of semi-flexible sheets is crucial in understanding the 
physical properties of planar molecules such as well exfoliated and dispersed silicate platelets l

,2. A 
flexible sheet is also a key to model tethered membranes which have attracted enormous interest for 
last two decades. Extensive studies of the conformational properties and dynamics of coarse­
grained polymer chain models over decades have provided enormous insight into many important 
fundamental issues in a variety of polymer systems (dilute solution to complex melt). Some of the 
basic phenomena include: short time Rouse dynamics (followed by reptation, post-reptation, and 
diffusion in melt), long time conformations such as self-avoiding walk (SAW) configurations in a 
good solvent, random walk (ideal) configurations at the theta point, globular or collapsed 
configurations in a poor solvent, and a range of visco-elastic responses (linear and non-linear) 
between steady-state and far from equilibrium. With the insight gained from studies of chains, our 
goal is to probe the physical properties of sheets, a natural extension. Particularly, it would be 
interesting to know how the segments of a flexible sheet move and conform in different 
environments suitable for nano-composites. Applications range from the response of clay platelets 
in various solvent environments to the segmental motion of protein beta sheets and their structural 
response to a range of molecular and cellular environments. While the importance of understanding 
the fundamental segmental dynamics and resulting conformational responses cannot be over­
emphasized, the challenge remains for predicting the universal characteristics of sheets. 

Several attempts have been made in recent years l 
,2 to investigate the conformation and dynamics of 

clay sheets by off-lattice molecular dynamics computer simulation models. The main attention has 
been focused towards explaining intercalation and exfoliation processes of clay platelets by 
extending the bead-spring chain model to bead-spring plane model l

. Analogous studies3 have been 
used to understand the conformation of tethered membranes. One of the primary strengths of off­
lattice [Monte Carlo (Me) and Molecular Dynamics (MD)] simulation methods is in capturing 
structural details at small (local) scales. Some of these studies have been very successful in 
describing the small scale local structures and segmental dynamics in such a complex system. As 
with the computer simulation modeling of polymer chains4

, it is not feasible to reach the long time 
asymptotic regimes5 in many practical applications for both conformation and dynamics by such 
bead-spring models due to excessive degrees of freedom. For a coarse-grained sheet (i.e., a mesh of 
nodes connected by flexible bonds), ample degrees of freedom are necessary to capture the various 
structural relaxation modes. Connected nodes on a discrete lattice with fluctuating bond lengths6 



can accelerate the relaxation dynamics while preserving the pertinent structural details via ample 
degrees of freedom4

. Extending the bond-fluctuating concept from chains6 to sheets and study their 
conformation and dynamics is one of our primary goal. 

Extensive simulations are performed to examine the multi-scale dynamics of a self-avoiding sheet 
(SAS) and its steady-state conformations? The mean square displacement of the center of mass of 
the sheet (R:2) and that of its center node (Rn2

) show asymptotic diffusive behavior. The segmental 
dynamics in short and long time (t) regimes can be deduced from the motion of the center node 

2 C\ t2fl + C2 t2vdescribed by the power-law, Rn ::::: with 11 ::::: 0.13 and v ::::: Yz where C1 and C2 are 
constants. The short time segmental dynamics of a sheet is found to be slower than analogous 
Rouse dynamics for linear chains. Based on our data, we conjecture? that the short time segmental 
dynamics can be described by Rn a t 1l8 with exponent 11 to be half (for our sheet) in comparison to 
Rouse dynamics for a linear chain. The long time asymptotic behavior is diffusive. The radius of 
gyration Rg scales with the linear size Ls of the sheet as Rg ::::: NY with 'Y ::::: 1/2 and N = L/ which is 
consistent with the conformational analysis of open tethered membranes with excluded volume 
constraints. 

The bond-fluctuation model of the self-avoiding sheee is further extended to understand the 
temperature dependence on the conformation and dynamics of a tethered membrane (i.e., nodes 
tethered by fluctuating bonds with excluded volume constraints) in an effective solvent media on a 
cubic lattice by Monte Carlo simulations. Large-scale simulations8 are performed to study the 
conformation and dynamics of interacting sheet (tethered membrane) in effective solvent media. 
Node-node (nn) and node-solvent (ns) interactions are used to demonstrate how the membrane 
moves, relaxes, and confonns as a function of temperature (1) and strength and range (r) of the 
interaction. Tethered nodes continue to execute their stochastic movements at each set of 
parameters. From the analysis of the mean square displacement of the center node (Rn2

) and that of 
their center of mass (R:2) as a function of time step (t) one can gain some insight into the segmental 
mobility and global motion of the membrane. The variation of Rn2 with t exhibits different power­
laws in different time regimes (short to long). As expected, we observe a sub-diffusive short time 
dynamics8 as for the self-avoiding sheets? However, the intermediate time dynamics is more 
complex with different power-law exponents. Data are too fluctuating to identify universal power­
laws in this regime. Segmental dynamics related to an individual node with larger sheet has not 
reached diffusive motion during the course of our simulation. The center of mass of the membrane 
shows diffusion in the asymptotic time regime. Thus, the global dynamics of the membrane has 
reached the asymptotic regime while we are unable to identify with good quality data whether the 
local segmental movement in solvent will reach such a diffusive motion. Note that the motion of a 
node in a self-avoiding sheet reaches the diffusive asymptotic regime similar to that of its center of 
mass8

. The segmental mobility is dependent on the interaction variables (nn, ns, r) and temperature 
(1). 

How the local segmental dynamical mode propagates through the membrane depends on its 
stiffness and flexibility which are controlled by temperature, nodal and solvent interactions apart 
from the excluded volume constraints. We observe8 that a repulsive interaction between the nodes 
leads to a stiffer sheet while an attractive interaction enhances flexibility with more wrinkles and 
crumpling to the sheet particularly at relatively low temperatures T = I - 4. For a stiff sheet 
(positive nn), in attractive solvent (negative ns), we find that the radius of gyration decreases on 
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increasing the temperature. Generally, Rg increases on increasing the range of interaction and the 
rate of increase is more pronounced at low temperatures. In contrast, the trends are opposite for the 
flexible sheet (attractive nn), i.e., the radius of gyration increases on increasing the temperature. 
The magnitude of Rg decreases on increasing the range of interaction with larger changes at lower 
temperatures. Dependence of Rg on temperature and the solvent seem consistent with the 
experimental observation on graphite oxide membrane in aqueous suspension9

. The dependence of 
Rg on the temperature is perhaps more complex than simple exponential or power-law behavior. In 
the absence of analytic form of such function, our quantitative (graphical) predictions8 may help the 
understanding of the laboratory data when they become available. Our simulations have clearly 
shown that wrinkling and crumpling can be achieved by designing membranes with the appropriate 
constituent (nn) and solvent (ns) interactions at appropriate temperatures. 
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